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A preliminary transformation of coordinates to bring the equation into
a form amenable to finite-difference methods is examined in relation
to the heat conduction equation with a singularity in the boundary con-
ditions.

To assess the accuracy of finite-difference approx-
imations, the usual criterion is the smoothness of so-
lutions of the equation [1]. In the case of discontinuities
in the solution or its derivatives, it is necessary to
go either to a very fine mesh, or to various methods
of eliminating the singularities such as that. for ex-
ample, of Volkov {2—4]. In some cases it is impos-
sible to use a transformation of coordinates such that
the solution becomes smooth enough in the new coor-
dinates.

We will examine parabolic equations of the type

ou 3} ou
C —=—{1—
at  ox (' ax)H’
0<x< X, ©>0, (1)

for which the problem is posed with inconsistent ini-
tial and boundary conditions of the type

Ulr—g = 0;
Ulemg =@ ()
ulx:X = 0 (2)

The smoothness of the solution closetox =0, T=0
is disturbed depending on which of the quantities
d"g |
dw Jt=+0
We will first study the case when C and A do not
vanish at the point (0, 0), and are quite smooth. Then
we may obtain in the first approximation for u the
i
expression ¢ (0)erfc ( ;;; ) . The form of the first
F AT
term for the asymptotic behavior of u at small T and
x suggests introduction of the new independent vari-
able ¢ =x/ (T)l/ % as a second approximation, to pre-
serve parabolicity, we may put n = 7. In the new in-
dependent variables, Eq. (1) takes the form

is the first to be nonzero.
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where the dependence of A and C on the independent
variables is allowed for. In view of the fact that 7 =
=7,X= 5(1;)‘/2, a singular disturbance of the smooth-

ness of the coefficients occurs only at small 7 (smooth-

ness with respect fo 1 is disturbed). Equation (3) has
a singularity at n = 0, and the condition when n = +0

should not be imposed, since the behavior of the solu-
tion when 7 = 0 is determined completely by the quan-
tity ¢(+0). The region of variation of the independent
variables will nowbe >0, 0 < < X/(T)l/z; because
of the rapic fall of u with increase of ¢ we may re-
strict examination at small 7 to the region 0 < £ < w,
For Eq. (3), under the condition

Ulemo = () 4)

the solution close to the ¢ axis will be no less smooth
than ¢; moreover, near this axis the solution will re-
peat the power features of ¢ at n~ 0. At values of A
and C nonconstant with respect to x there is a dis-
turbance of the smoothness of these quantities with
respect to 77, since smoothness only with respect to
(n)’/ 2 js preserved; the latter also holds for the so-
lution.

In the construction of the finite-difference scheme
for (3) a singularity arises near n ~ 0, since the equa-
tion is degenerate there. As has been pointed out
above, at 7 =+0 one should solve the problem simply
with respect to £, without taking account of 7 at val-
ues close to zero. The usual considerations that ap-
ply in constructing a scheme that approximates to
the left and right sides of (3) with sufficient accuracy
are not applicable, since near 7 = 0 the solution is
smooth not with respect to £, 1, but only with re-
spect to £, (n)l/ 2, It is undesirable to make the trans-
formation nn — (11)1/ 2, since it is convenient to preserve
the uniformity of the net with regard to n = 7, with the
object of linking the solution later with description of
the process outside the local disturbance of smooth-
ness.

In accordance with the asymptotic form of the so-
lution, in formulating the finite-difference scheme in
the variables £, 1, we should take account of smooth-
ness with respect to £ and of the near exponential be-
havior with respect to 717. Because of the smoothness
with respect to ¢ and (1)!/2, it is natural to take ap-
proximations fo the differential expressions of the
ordinary form with respect to £, and to carry out an
approximation to differentiation with respect to 7 in
such a way that it is exact for the asymptotic solution
for n ~ 0, while going over to the usual relations at
large 7.

We will examine a six-point scheme approximating
to (3). We will first consider the case of constant co-
efficients, but assume that to (3) we may add a heat
source which, being smooth in the variables x, 7, will
be smooth with respect to the variables £, (n)l/ 2, In
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particular, we may thus take account of the deviation
of A and C from constancy, i.e., from their values at
¢ =0, 71=0, including nonlinear problems, We assume
below that Eq. (1) is reduced by choice of scales to a
form such that A(0,0) = C(0,0) = 1,

Under the homogeneous conditions (4) there are so-
lutions for (3) which behave as n'k/z, k=1, 3, ...,
and correspond to an ordinary Boussinesq expansion,
being unbounded when 1 — +0. They characterize the
fall in the influence of a local disturbance in the vicin-
ity of n = 0, since along with such solutions is ex-
pressed the solution of the problem (1)-(4) for n ex-
ceeding the second coordinate of the source carriers.
The general solution is obtained by superposition of
such expansions. We will suppose that, because of
smoothness of all the quantities, the approximation
to the differential operator with respect to ¢ on the
right side of (3) does not produce difficulties, and
leads to a sufficiently accurate approximation for each
1, so that it may be considered that Eq. (3), approxi-
mated by the method of lines, has been solved. Fur-
ther approximation reduces to sufficiently accurate
replacement of this system of differential equations
with respect to 1 by difference expressions with re-
spect to . The approximation relation for a first-
order system with unknown vector functions is

du - =
nC Gy —Lsutrn),
Cu={Cu}, ®)

where L; is a difference approximation to the right
side of (3), and h ={h;}, u ={uj} are values of h and
u at certain chosen nodes with respect to £. The de-
pendence of the solution on 7, as has been explained,
is described for small 5 by semiintegral powers of 7.
The zero power corresponds to breakdown of the
boundary value u |,—,~0. The influence of extraneous
circumstances of the type of nonlinearity of the prob-
lem, the lack of constancy of A and C is accounted for
by the power +1/2, and the influence of attenuation of
local disturbances will be described by negative pow-
ers, of which the first, i.e., ~1/2, should be taken.
For (5) we construct a scheme of the type

a,u —{—bu,,l—hc,Lgu,—i-dLgu,ﬂ—i—eh —]—f, _, =0, (6)

where by u. uj, h we understand the value of the vectors
i and b at the pomts 7 = jl (Iis the mesh size with re-
spect to 7). We assume that it must be accurate for
solutions of the type indicated above when h = 0. These
solutions have the form n®{i,, where u, satisfies the
equation Lgﬁa = qily, it not being assumed that the
homogeneous boundary condition is fulfilled when ¢ =
= 0. Indeed, on the coefficients (6) we impose the con-
ditions (C = const)

a,+bJ=0,

1 1
1711/2+b 1]—17"':!7]]/— ?4‘61,711 1'—2_‘20’

a,n“/q ! 1'“‘3/7], é~d 1]“1”-—;:0.
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These equations determine aj, bj, cj, dj to an accu-
racy up to a general multiplier which plays no part
when h = 0. We may choose it in such a way that we
have

SR it Yl

9 =—b;= 2 2 (j—1)2

1

5

When 7 — <« this scheme goes over to the symmetrical
implicit scheme of [1]. We have the two coefficients
ej, f to take into account the influence of h, and they
must be determined by assigning the form of h, as
determined from the conditions of the original prob-
lem. Quite frequently, in particular, h will have the
form % ug.

In spite of our having reduced the problem of de-
termining the singularities of the solution to the usual
finite-difference form, the boundary with respect to
¢ where the equations are being examined is very
large (X/(7)!/%). In view, however, of the rapid de-
crease in a disturbance due to a singularity at the
boundary, the behavior will only be appreciable in
a certain region, depending on the required accuracy
of the calculations. We may determine the boundary
of this region on the basis of the upper bound solution
ug = M erfc (£/2), i.e., we take the region to be 0 <
< & < &y, where &; is a root of the equation uy(€) = &,
and ¢ is the required accuracy. For small € the use
of the asymptote gives the estimate £y = ¢(¢) 1In'/ 2(1/¢)
for £;, where ¢(g) is bounded above and below by pos-
itive constants. At the boundary ¢ = £, we may im-
pose a condition of the first kind. If we change over

to conditions of the third kind, (u +a _g_”_ =0,

then by requiring that the standard solutlon,50 hich is
the main term of the asymptote for the exact solution,
e.g., erfc (£/2), satisfies this condition, we find «.

A solution different from the standard will not satisfy
this boundary condition, and to estimate the error in
the solution we may use the value of the discrepancy
when the minor term of the asymptote of the solution
is put into the boundary condition. Direct calculation
shows that in an exact treatment we may underestimate
somewhat the value of £, with the given accuracy.

We will examine the question of joining the solution
near a singularity with the solution outside the region
Q2 (n=0,0=<¢=<£). Let the solution outside this re-
gion be found by the use of standard six-point schemes,
taking account only of equations for which all six points
lie outside the self-similar region. At the boundaries
of the regions, in an exact differential problem, we
must assign conditions of the fourth kind. We will de-
scribe how these conditions may be taken into account
in composing the finite-difference equations.

Let there be a nonself-similar net with mesh sizes
hyand Iy = I, x7 =ihy, 75 = lj outside region Q; if all
the six points entering into a certain finite-difference
equation are not contained in £, this equation is taken
into account, If of the six points (ij), (i £ 1,j), (i,j — 1),
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(i+1,j-1)only the point (i — 1,j) of the first three
falls inside 2, we proceed as follows. An equation is
taken for these six points, the point (i ~1, j)being con~
sidered fictitious, i.e., the value of u at that point does
not enter into the final description of the field ofu. Ac-
cording to the points (i, j), (i £ 1,j) we construct an in-
terpolation polynomial on theline v = jI. Then an equa-
tion is taken in 2 which contains the three points closest
to & with respect to ¢, points with n =jI, n=( — 1)1.
Then equating values of u at the two points closest to £,
with 7 = 7 = jl in Q to their values obtained from the
interpolation polynomial in the nonself-similar net,

we may exclude from the four relations obtained the
value of u at the point (i —1,j), as well as the values
at the two points of the net nearest to £;. Then of the
six unknown quantities with 7 = 1 = jI there remain
only three, i.e., in the nonself-similar net, the val-
ues of u at the points (i, j) and (i + 1,j), and in the
self-similar one—the value of u at the third point of
the self-similar net from the boundary ¢ = £,, These
three values are connected by one relation, into which
enter also the values when 7 = 1 = (j —1){, possibly at
fictitious points. We will consider the values of the
quantities in both nets at ¢(§j — 1) to be already known,
in accordance with the parabolic nature of the prob-
lem, and in the event of it being impossible to use the
quantities u at the fictitious points, these values are
recovered from the compatibility conditions.
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If more than one point in the nonself-similar net
with 7 = j] falls in Q for certain equations, then the
pertinent operation is not carried out, and the equa-
tions are not taken into account. Of the equations in
Q we take account only of those which do not contain
values of u at the excluded points. Thus, for each j
we have, for determination of u, a system of equa~
tions with a tridiagonal matrix, whose solution does
not present special difficulties.

We note that analogous operations may also be
performed to eliminate singularities of any specific
form, if we introduce a new system of coordinates
such that the main part of the singularity will be a
smooth function of these coordinates.
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